Volume complexity for Janus AdS3 geometries

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Roberto Auzzi
  • Stefano Baiguera
  • Sara Bonansea
  • Giuseppe Nardelli
  • Kristian Toccacelo

We investigate the complexity-volume proposal in the case of Janus AdS (3) geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.

Original languageEnglish
Article number045
JournalJournal of High Energy Physics
Volume2021
Issue number8
Number of pages42
ISSN1029-8479
DOIs
Publication statusPublished - 10 Aug 2021

    Research areas

  • AdS-CFT Correspondence, Black Holes

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 277227694